Aberrant catalytic cycle and impaired lipid transport into intracellular vesicles in ABCA3 mutants associated with nonfatal pediatric interstitial lung disease.
نویسندگان
چکیده
The ATP-binding cassette transporter ABCA3 mediates uptake of choline-phospholipids into intracellular vesicles and is essential for surfactant metabolism in lung alveolar type II cells. We have shown previously that ABCA3 mutations in fatal surfactant deficiency impair intracellular localization or ATP hydrolysis of ABCA3 protein. However, the mechanisms underlying the less severe phenotype of patients with ABCA3 mutation are unclear. In this study, we characterized ABCA3 mutant proteins identified in pediatric interstitial lung disease (pILD). E292V (intracellular loop 1), E690K (adjacent to Walker B motif in nucleotide binding domain 1), and T1114M (8th putative transmembrane segment) mutant proteins are localized mainly in intracellular vesicle membranes as wild-type protein. Lipid analysis and sucrose gradient fractionation revealed that the transport function of E292V mutant protein is moderately preserved, whereas those of E690K and T1114M mutant proteins are severely impaired. Vanadate-induced nucleotide trapping and photoaffinity labeling of wild-type and mutant proteins using 8-azido-[(32)P]ATP revealed an aberrant catalytic cycle in these mutant proteins. These results demonstrate the importance of a functional catalytic cycle in lipid transport of ABCA3 and suggest a pathophysiological mechanism of pILD due to ABCA3 mutation.
منابع مشابه
Hereditary disorders of surfactant homeostasis cause acute and chronic lung disease in infancy.
In this issue of Thorax, Doan et al report the clinical and pathological findings from nine paediatric patients with severe acute and chronic lung disease caused by mutations in the ATP-binding cassette A3 protein (ABCA3), a lamellar body-associated transport protein expressed selectively in type II epithelial cells in the alveoli (see page 366). Previous reports regarding the mutations in ABCA...
متن کاملIncreased risk of interstitial lung disease in children with a single R288K variant of ABCA3.
RATIONALE The ABCA3 gene encodes a lipid transporter in type II pneumocytes critical for survival and normal respiratory function. The frequent ABCA3 variant R288K increases the risk for neonatal respiratory distress syndrome among term and late preterm neonates, but its role in children's interstitial lung disease has not been studied in detail. OBJECTIVES In a retrospective cohort study of ...
متن کاملAlveolar injury and regeneration following deletion of ABCA3.
Adaptation to air breathing after birth is dependent upon the synthesis and secretion of pulmonary surfactant by alveolar type 2 (AT2) cells. Surfactant, a complex mixture of phospholipids and proteins, is secreted into the alveolus, where it reduces collapsing forces at the air-liquid interface to maintain lung volumes during the ventilatory cycle. ABCA3, an ATP-dependent Walker domain contain...
متن کاملAnalysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.
RATIONALE ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity. METHODS The exact site where ABCA3 is cleaved was localized...
متن کاملMolecular and cellular characteristics of ABCA3 mutations associated with diffuse parenchymal lung diseases in children.
ABCA3 (ATP-binding cassette subfamily A, member 3) is expressed in the lamellar bodies of alveolar type II cells and is crucial to pulmonary surfactant storage and homeostasis. ABCA3 gene mutations have been associated with neonatal respiratory distress (NRD) and pediatric interstitial lung disease (ILD). The objective of this study was to look for ABCA3 gene mutations in patients with severe N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 295 4 شماره
صفحات -
تاریخ انتشار 2008